

Retrieving and manipulating the key structures in the

Version 5

Azuga ELD
March 04, 2024

Azuga ELD system through a set of RESTful APIs

Programmatic Access to the Azuga (LD Platform

 1

Contents

Introduction ... 2

Prerequisites .. 3

Example API Request ... 4

Fundamental Objects .. 6

Users ... 6

Assets .. 7

Drivers .. 7

Drivers and Hours of Service Objects .. 7

Driver Daily .. 9

Driver History ... 11

Driver Violations ... 14

DVIRS .. 15

Work Orders .. 17

Job Sites .. 18

Getting Started with Sample Applications .. 18

Basic “read” Access to Objects ... 19

Creating Objects ... 19

Summary ... 20

Accessing the Azuga ELD REST APIs..3

 2

Introduction

movements and activities of mobile workers in general, and drivers subject to federal
“hours of service” regulations in particular. The full solution comprises a front-end app
typically running on a tablet form-factor device, an administrative portal providing
access to information about a fleet of vehicles, and a “back-end” cloud-resident
platform that monitors and manages the real-time information transmitted from the
tablets and other telematics devices.

This document focuses specifically on the services that are offered by the back-end
platform. These services, while used to support the tablet and portal interfaces provided

“RESTful” interface. 1 Details of individual REST calls are documented on the

1 See http://en.wikipedia.org/wiki/Representational_state_transfer for an overview of REST
concepts

Azuga ELD backend supports both mobile and platform clients through REST API

Azuga ELD provides a powerful and comprehensive solution for managing the

by Azuga ELD, were designed to be equally accessible by other clients through a formal

“developer.eldazuga.com” site.

http://en.wikipedia.org/wiki/Representational_state_transfer

 3

Prerequisites

or

You should have a username and password for an administrative user on that account.
Ideally, the account should be set up with one or more devices and assets. These can
be added from the main administration page after logging in to the appropriate server.

the back-end platform. As with many REST models, objects, identified by a particular
URL, can be created, read, updated, or deleted through the standard HTTP operations
of POST, GET, PUT, and DELETE respectively. The underlying state of an object is
encoded as a JSON structure2. Parameters that may influence the request (for example,
specifying a time range of interest in retrieving a set of records) are encoded as part of
the query string associated with the URL. Finally, to access individual objects (rather
than a full collection), it is generally possible to augment the base URL with the unique
“id” of the object in question. For example,

would return all assets in the account, while:

would return a single element from the collection.

distinct accounts are managed by a single server instance,) every API request must
include some form of account authentication. The authentication consists of a
username, password pair that is encoded using a mechanism known as “basic
authentication”. Details are described in the inset below.

2 At present, all the APIs discussed in this document manipulate data in a JSON format. However,
some of the Legacy APIs which use the XML format can still be accessed as part of the transition
period. Plans going forward include the deprecation or removal of all old API endpoints and all API
requests and responses should only use JSON format.

Authenticating

REST requests

Before Starting

https://staging.eld.azuga.com

https://eld.azuga.com/api/v2/assets

https://eld.azuga.com/api/v2/assets/143525

Before attempting to work with the Azuga ELD APIs, it’s necessary to have obtained an
account on one of the Azuga ELD servers - typically either:

Azuga ELD provides a uniform method for manipulating the key objects that make up

Because Azuga ELD provides a “multi�tenant” architecture (meaning a number of

Accessing the Azuga ELD REST APIs

https://eld.azuga.com

https://hos.Azuga ELD.com/
https://staging.Azuga ELD.com/
https://hos.Azuga ELD.com/api/v2/assets
https://hos.Azuga ELD.com/api/v2/a

 4

Authenticating an API request

There are some subtleties associated with this authentication scheme. If you’re creating

server using these REST APIs, it may not be possible to retrieve the JSESSIONID
cookie as described in step 5. This is due to a security limitation imposed on
applications in the browser environment. In this case, it’s possible to simply include
the encoded username/password pair with every API request.

browser tab and issue any API calls from another tab in the same browser. In this

Example API Request

Note: in many instances it is possible to explore the available API set without writing
any code. This facility relies on the ability present in most browsers to work in multiple

establishes a persistent session identifier within the browser that will be used by API
references from other tabs. Following the steps below should display the result of a
simple API call to return information about all the users in an account.

1. Enter your username and password to log in. (You should see the main landing page)

2. Open a new tab in the same browser

3. From this new tab, enter the URL for an API, e.g.,

This should display an JSON structure similar to the following that enumerates the
users associated with the account.

1. Obtain a valid username and password for your account

2. Encode the username and password:
Using Base64 Encoding, encode the username and password with a colon
separating them to obtain the encoded credentials

e.g. johnsmith@mail.com:mysecurepassword
-> am9obnNtaXRoQG1haWwuY29tOm15c2VjdXJlcGFzc3dvcmQ=

3. Put an HTTP request header called "Authorization" on any API request with
the value of "Basic <encoded credentials>"

e.g. Authorization:
Basic am9obnNtaXRoQG1haWwuY29tOm15c2VjdXJlcGFzc3dvcmQ=

4. The HTTP response will include a "Set-Cookie" header that contains a short
lived session id that can be used for additional authorization requests

e.g. Set-Cookie:
JSESSIONID=4664C731A74FA93252FE9896FF389E2D; Path=/

5. Use the JSESSIONID cookie on all subsequent API requests

e.g. Cookie: JSESSIONID=4664C731A74FA93252FE9896FF389E2D

Using a browser

to explore an API

a browser-based application in JavaScript that will communicate with the Azuga ELD

arrangement, the authenticated JSESSIONID is automatically sent to the Azuga ELD

https://eld.azuga.com/api/v2/users

server with each API request without needing to explicitly add any headers.

As explained below, it is also possible to log in to the “ eld.azuga.com” site in a separate

tabs. Logging into the Azuga ELD portal (e.g., eld.azuga.com) with valid credentials

https://hos.Azuga ELD.com/api/v2/users

 5

You can try accessing other objects, e.g., assets, in a similar fashion.
)

This simple technique works because the browser issues an HTTP GET request to the

authentication information, returns the corresponding data encoded as JSON. Normally,
it would be the responsibility of the external programming making the API requests to
format and issue this GET request.

To perform requests other than GET, (e.g., creating (POST) or modifying (PUT) an
instance of an object) it would be necessary to write a program to properly format the
request, or to use a debugging proxy tool like “Fiddler”.3

When accessing a REST endpoint (e.g., the User object in the example above) the
information returned often represents an unqualified collection of the objects.
Individual objects, or subsets, can be specified either by appending a list of object-
identifiers (separated by a ‘+’ symbol) as part of the main URL, or by adding specific
query parameters.

3 See for example, http://www.telerik.com/fiddler

JSON returned by

a “GET” request

Use Query

Parameters to

access individual

objects or objects

matching a

pattern.

https://eld.azuga.com/api/v2/assets

supplied URL. The Azuga ELD system receives this request and, based on the associated

http://www.telerik.com/fiddler

 6

Fundamental Objects

API, it is important to have some familiarity with the system’s underlying data model.

This section will focus on the interrelationships among four key structures:

 Accounts
 Users
 Drivers
 Assets

All major data objects accessible to applications are contained under the umbrella of a
particular account. In this section, we’ll look at each of the three objects shown in the
diagram above and discuss the ways in which they’re inter-related.

Users

One or more Users can be associated with a given account, each of whom is unique.
In the example API request, each user is also given a unique numeric identifier
generated by the system. (In the illustration above, this identifier is marked by the “id”
field and has the value 1500009.) This numeric identifier will be important in several

Example:

 returns information about all users

/1246844
returns information about a single user
with the supplied id.

/1246844+1246849
returns information about two users

?first-name=John
returns information about all users with
the given first name “John”.

All data objects

accessible through

the API are

contained by a

particular account.

Each user is

associated with a

particular account

and is identified

by a globally

unique email

address.

https://eld.azuga.com/api/v2/users

https://eld.azuga.com/api/v2/users

https://eld.azuga.com/api/v2/users

https://eld.azuga.com/api/v2/users

In order to effectively use and manipulate the objects exposed by the Azuga ELD REST

https://hos.Azuga ELD.com/api/v2/users
https://hos.Azuga ELD.com/api/v2/users/1246844
https://hos.Azuga ELD.com/api/v2/users/1246844
https://hos.Azuga ELD.com/api/v2/users/1246844+1246849
https://hos.Azuga ELD.com/api/v2/users/1246844+1246849
https://hos.Azuga ELD.com/api/v2/users?first-name=John
https://hos.Azuga ELD.com/api/v2/users?first-name=John

 7

cases as it provides a means of linking related records. For example, in Hours of
Service (HOS) applications, one record type returns information about a driver’s daily
activity. The driver in question is represented within that record by an element such as

userId: 1500009

where the value of the userId element is the unique numeric id of a particular user.

Each user can also be assigned a set of user roles. A user’s user roles determine what
capabilities they have within the system. In the above JSON example, the user was
designated as having USER_ROLE_ACCOUNTADMIN. The full list of default user
roles and their access levels can be found on

Assets

Assets provide an abstraction to represent the difference between the object being
monitored and the instrument doing the monitoring. For example, an asset might be a
particular car in a fleet and may have attributes like its Vehicle Identification Number.
The vehicle may be equipped with a telematics unit from a given manufacturer. The
collected data, though, is conceptually associated with the asset and from an API
perspective will be retrieved by referencing the asset object.

“Asset Name” is typically used to identify a given piece of equipment. Neither the
name given to the supporting device, nor its unique identifier are usually visible to the
end user.

Drivers

through the Hours of Service application in a smartphone or a tablet and perform
Driving Events. Driving events are created by drivers operating an equipment. Any
update using the ‘api/v2/drivers’ endpoint also reflects on the similar fields that can be
found on the ‘api/v2/users’ endpoint, vice versa.

Drivers and Hours of Service Objects

The preceding material discussed some of the basic data constructs underlying the

of vertical applications. This section focuses on objects that support a particular
domain, that of mobile workers or professional drivers that will use some form of tablet
or phone device to record their travels and duty status, inform them of new assignments,
and support them in conducting and documenting any required inspections.

Many professional drivers are subject to a set of regulations defined by the “Federal
Motor Carrier Safety Administration” that define specific guidelines for the amount of

In the standard Azuga ELD clients (Azuga ELD web portal or Android/iOS app) the

Drivers are a particular type of User that are allowed to access the Azuga ELD platform

Azuga ELD system. The concepts of users, drivers, and assets pertain to a wide variety

http://developer.eldazuga.com/index.php/user-roles-1704

http://developer.Azuga ELD.com/index.php/user-roles-1704

 8

time a driver can operate a vehicle without some form of break. The Hours of Service

allowing the driver to note when they transition among defined states (e.g., Driving,
Off Duty, etc.) and presenting the driver with indications that they may be about to
exceed a particular threshold. The accumulating information is also relayed by the app

Six objects, listed in the following table, provide the bulk of the information relevant
to understanding a particular driver’s activity.

Object Description

Driver Summary information about a user registered within the system
that will be driving a commercial vehicle subject to the FMSCA
regulations.

Driver Status A structure that aggregates all current information about a driver
such as their current duty status, violations, etc.

Driver Daily Summary information about an individual’s activity on a
particular day

Driver History Records reflecting all status changes for a driver

Driver Violations Information about driving violations incurred by a driver

DVIRS Details of the assets that were inspected

Table 1 - APIs related to Hours of Service application

Pictorially, the relationships among various items is shown below:

app offered by Azuga ELD assists a driver in complying with these regulations by

back to the Azuga ELD server where it can be accessed through additional API calls.

 9

Image 1 - Relationships between a Driver object and associated data

In addition, two other objects, Work Orders and Job Sites provide information for the
activities of mobile workers that may or may not be subject to the FMCSA regulations.

Driver Daily

The Driver Daily object returns information about a full day’s activity for one or more
drivers over a given time range. An example URL for this API includes a specific time
range and an indication of whether records for all drivers are of interest:

date=2017-03-08&to-log-date=2017-03-08

In this example, there are several arguments included as part of the query string in the
URL:

all-users=true indicated that the request should return information about all drivers in
the account. To select only a specific driver, the userId for the individual in question
can be added to the query string in place of the allUsers:

date=2017-03-08&to-log-date=2017-03-08

Alternatively, if the credentials passed with the request are for an individual user
instead of a user with the role ACCOUNT_ADMIN, only records pertaining to that
user will be returned.

from-log-date, to-log-date define the time range of interest.

As with all the API calls, the information returned from this takes the form of an
JSON structure. The (somewhat lengthy) result of the example above appears as
follows:

https://eld.azuga.com/api/v2/driverDailies?all-users=true&from-log-

https://eld.azuga.com/api/v2/driverDailies?user-id=1500098&from-log-

https://hos.Azuga ELD.com/api/v2/driverDailies?all-users=true&from-log-date=2017-03-08&to-log-date=2017-03-08
https://hos.Azuga ELD.com/api/v2/driverDailies?all-users=true&from-log-date=2017-03-08&to-log-date=2017-03-08
https://hos.Azuga ELD.com/api/v2/driverDailies?user-id=1500098&from-log-date=2017-03-08&to-log-date=2017-03-08
https://hos.Azuga ELD.com/api/v2/driverDailies?user-id=1500098&from-log-date=2017-03-08&to-log-date=2017-03-08

 10

Principal fields in this structure are listed in the following table.

Object Description

Cargo Type of material being shipped as supplied on “Driver Settings”
page of app

Carrier Name of Carrier as supplied on “Driver Settings” page of app

Certified Boolean indicating whether the day’s log had been certified by
the driver

coDriverName Optional second driver on duty

logDate Date of Report

driverEmail Email of user object associated with person logged into tablet

driverName Name of user object associated with person logged into tablet

 11

Table 2 – Principal fields returned from Driver Daily request

Driver History

screen to easily change their driving status. There are five defined states for a driver:

- Driving

- On Duty

- Off Duty

- Sleeper Berth

- Waiting at Site (for Oil Field Service Exception)

When the driver makes an explicit state change, they are prompted to provide an
optional note documenting the change. In addition, the software will record the
location of the device at the time the change was made. Aside from the five defined
driving events, there are also secondary events that are recorded at different instances
by the application.

The Driver History object provides access to these changes. Typically, the call to
retrieve Driver History records would provide a date range of interest. The resulting
JSON appears as follows:

beginOdometer Value entered by driver at start of day

endOdometer Value entered by driver at end of day

startTimeOfDay Time when the day of the driver starts

vehicleId Identifier of truck entered in driver settings

trailerId Identifier of trailer entered in driver settings

userId Identifier of user of driver daily

manualLog Boolean value indicating if the log was manually entered.

Drivers using the Azuga ELD Hours of Service app are able to use the main interface

 12

The key fields for each record are summarized in the table below:

Field Description

userId reference to the relevant driver whose status change is being
reported

location city and state where status change was initiated

driverEdit True if driver edited this status record

note optional text field containing any notes provided by the driver
relating to the state change. These notes are reflected in the
visual chart in the app and reports

validBeginTime date and time stamp recording time when state change was
initiated

vin Vehicle Identification Number of the asset used by the driver
when the event was recorded

recordStatus The current status of the driver history

 13

eventType The new driving state – one of OffDuty, OnDuty, Sleeper,
Driving, WaitingAtSite (or secondary event types)

recordOrigin The origin of the record

eventTime Date and time of the status change

assetId Identifier of the asset used by the driver when the event was
recorded

lastChangedDate Time at which the most recent state change for the driver was
recorded

Table 3 – key fields returned by the Driver History API

 14

Driver Violations

The Driver Violations API includes a list of any violations incurred over a specified
time range. Possible violations include:

Violation Type

CYCLE_DUTY_HOURS

SHIFT_DRIVE_HOURS

BREAK_DRIVE_HOURS

SHIFT_ELAPSED_HOURS

CAN_DAILY_DRIVE_HOURS

CAN_DAILY_DUTY_HOURS

CAN_SHIFT_DRIVE_HOURS

CAN_SHIFT_DUTY_HOURS

CAN_SHIFT_ELAPSED_HOURS

CAN_DAILY_OFF_DUTY_HOURS

CAN_24MAN_OFF_DUTY_HOURS

CAN_CYCLE1_DUTY_HOURS

CAN_CYCLE2_DUTY_HOURS

CAN_CYCLE2_24OFF_DUTY_HOURS

CAN_OIL_WELL_SERVICE

Table 4 - Possible Values of Driver Violations

Each violation includes a timestamp reflecting the date and time at which the violation
occurred and in indication of the type of violation. Violations are returned in a JSON
collection as illustrated below. Not only that each violation has its own unique id, but
all refers to the userId of the associated driver that has incurred the violation.

 15

DVIRS

Drivers subject to FMCSA regulations are required to perform full vehicle inspections
at various times and to record the inspection results in a Driver-Vehicle Inspection

inspection template. Each asset in an account can be associated with a particular
template and then grouped in a single DVIR record.

DVIRS are structured as hierarchy. Each DVIR will be associated with one or more
asset inspections. Each asset inspection that belong in a DVIR are also associated with
one template, e.g., “Hauler/Tanker”. A template in turn can have one or more areas
(e.g., Safety Equipment and Vehicle). Finally, each area consists of several items (e.g.,
Air Compressor, Hoses, Belts) that constitute the actual parts to be inspected.

The JSON structure returned by the DVIRS API has the following form:

A fleet of ten

trucks may

associate six with

one type of

inspection, and

four with another

based on the type

of truck and

relevant

inspection points.
Report. In the Azuga ELD system, the fields relevant to an inspection are defined by an

 16

Values in this structure include

Field Description

userId Identifier of the individual performing the DVIR

startTime/endTime The times at which the inspection was started/completed
respectively.

status Either IN_PROGRESS or CERTIFIED

inspectionType Reflects whether this inspection was completed PRE_TRIP
or POST_TRIP

inspectorType Either DRIVER or MECHANIC

location Location where the DVIR was performed

odometerKm The odometer of the asset when the DVIR was performed.

certifyMessage Message of the inspector along with the inspector name.

generalComments General comments from the inspector.

equipmentCondition Condition of the assets inspected. Can either be
DEFECTS_CORRECTED, UNSATISFACTORY or
SATISFACTORY.

signatureMediaId Identifier of the media containing the inspector’s signature.

dvirFormIds Identifiers of the individual inspections per asset that
belong to the DVIR record.

Table 5 - Fields returned from DVIRS API

 17

Note that a DVIR record has the dvirFormIds field which are identifiers for each of the
inspections that belong to that specific DVIR. In the example above, the DVIR record
indicates two asset templates were used in the inspection: 31108 and 31109. Details of
the asset template’s areas and specific items inspected in the DVIR can be accessed at
the dvirForms endpoint:

Work Orders

In addition to monitoring Driver Hours of Service for compliance with the FMCSA

particular jobs (work orders) to individual drivers. Drivers receive notifications of their
assignments on their mobile device and can register the time of completion of the work
order.

Each Work Order is associated with a particular Job Site record as shown in the
illustration below.

Programmatically, the jobSiteId field of the structure returned from the Work Orders
API request can be used to retrieve information about the corresponding job site.

Each workorder is

associated with a

user (referenced by

userId) and a

jobsite (referenced

by jobSiteId)

A given user may be

assigned several

workorders

https://eld.azuga.com/api/v2/dvirForms/31108+31109

regulations, Azuga ELD Hours of Service app provides a powerful facility for assigning

https://hos.Azuga ELD.com/api/v2/dvirForms/31108+31109

 18

Job Sites

As noted above, Job Sites are used in conjunction with Work Orders and provide
simple location information about a particular business or residence.

For example, to retrieve information about a specific job site (in this case the site with
the id 37179) you can issue this API request:

The field names should be largely self-explanatory with the possible exception of the
“note” field which presents the free form text entered by the user when the job site was
defined.

Getting Started with Sample Applications

retrieve data from and send data to the backend system. Almost all samples are written

They can be launched either from a web server environment or directly from a file
system. The Sample Applications link can be found here:

https://eld.azuga.com/api/v2/jobSites/37179

Azuga ELD provides sample code to illustrate how the RESTful calls can be used to

in JavaScript and can be downloaded from the “ developer.eldazuga.com” website.

https://hos.Azuga ELD.com/api/v1/jobsites/37179

 19

Basic “read” Access to Objects

Probably the simplest way to begin working with the API set is to explore the various

is a small JavaScript application that, when launched, provides an interface to retrieve
all records of a certain type within an account. The application, shown in the screenshot
below, provides buttons that correspond to several of the objects exposed in the API.

Note that the actual URL used to retrieve the information is presented so it can be
easily copied and used in any additional experimentation.

Creating Objects

The next set of samples illustrates how to create new instances of various objects.
These samples, along with an explanatory “ReadMe”, are included in the

This zip file expands into a directory containing several HTML pages with names of
the form “createType.html. Corresponding to each of these pages is a small JavaScript
file with the same basename, but with a “.js” suffix. The real logic that is common to
all the pages resides in the createxxx-jscore.js file. As long as these files reside in the
same directory you should be able to launch any sample application by clicking on the
“.html” file to open it in a browser. For example, the illustrations below show the
“createAsset” application both before and after issuing the POST to create the object.
The body of the POST sent to the server, as well as that of the reply from the server
are displayed after the create operation.

Image 2 - interface from Azuga ELD_API_Testbed-V2 sample

endpoints using the http “GET” operator. The file “Azuga ELDBAPIBTestbed�V2.html”

http://developer.eldazuga.com/index.php/sample-applications-v2/

“createSamples.zip” archive on the developer.eldazuga.com site.

http://developer.Azuga ELD.com/index.php/sample-applications-v2/

 20

Summary

platform. More detailed information about the individual APIs is presented on the

objects covered in this present discussion. Depending on the particular account,
<baseURL> will be one of the following:

or

https://eld.azuga.com

This document discussed several of the key objects that form the basis of the Azuga ELD

https://staging.eld.azuga.com

“developer.eldazuga.com” website.The table below provides a quick review of the

https://hos.Azuga ELD.com/
https://staging.vistracks.com/

 21

Object Description and REST access point

Users Provides access to one or more users associated with the target
account.

<baseURL>/api/v2/users

Assets End-user facing abstraction for all data collected about a
particular vehicle

<baseURL>/api/v2/assets

Drivers Users that login to the application and perform driving events

<baseURL>/api/v2/drivers

Driver Daily Record that summarizes the activities of a driver using the HOS
application.

<baseURL>/api/v2/driverDailies

Driver History Record that indicates time and place of explicit driving status

changes

<baseURL>/api/v2/driverHistories

Driver Violations Records that reflect any driving thresholds that were exceeded

<baseURL>/api/v2/driverViolations

Driver Status Records summarizing current driving state for each driver.

<baseURL>/api/v2/driverStatuses

DVIRS Records that capture the state of all asset inspections and
identifiers to the individual asset templates with areas and points.

<baseURL>/api/v2/dvirs

Jobsites Address information for locations where particular activities are
to be performed by a mobile worker

<baseURL>/api/v2/jobSites

Work Orders Record that defines a particular assignment for a user within the
system

<baseURL>/api/v2/workOrders

Table 6 - Summary of important APIs

