
Programmatic Access to the VisTracks Platform

Retrieving and manipulating the key structures in the
VisTracks system through a set of RESTful APIs

Version 4

VisTracks, Inc.
June 26, 2015

1

Contents

Introduction..2

Prerequisites...3

Accessing the VisTracks RESTAPIs..3

Example API Request..4

Fundamental Objects... 6

Users.. 6

Devices...8

Assets...9

Provision Records..9

Configuring Smartphone and Tablet Objects..9

Drivers and Hours of Service Objects...10

DriverDaily.. 11

DriverHistory...13

DriverViolations.. 15

Inspections... 16

Workorders.. 17

Jobsites...18

Getting Started with Sample Applications.. 19

Basic “read” Access to Objects... 19

Creating Objects.. 19

Updating, Deleting and Combining Objects... 20

Summary..21

2

Introduction
VisTracks provides a powerful and comprehensive solution for managing the
movements and activities of mobile workers in general, and drivers subject to federal
“hours of service” regulations in particular. The full solution comprises a front-end
app typically running on a tablet form-factor device, an administrative portal
providing access to information about a fleet of vehicles, and a “back-end”
cloud-resident platform that monitors and manages the real-time information
transmitted from the tablets and other telematics devices.

This document focuses specifically on the services that are offered by the back-end
platform. These services, while used to support the tablet and portal interfaces
provided by VisTracks, were designed to be equally accessible by other clients
through a formal “RESTful” interface.1 Details of individual REST calls are
documented on the “developer.vistracks.com” site.

VisTracks backend supports both mobile and platform clients through REST API

1 See http://en.wikipedia.org/wiki/Representational_state_transfer for an overview of
REST concepts

http://en.wikipedia.org/wiki/Representational_state_transfer

3

Prerequisites
Before attempting to work with the VisTracks APIs, it’s necessary to have obtained
an account on one of the VisTracks servers -- typically either

http://live.vistracks.com

http://demo.vistracks.com

You should have a username and password for an administrative user on that account.
Ideally, the account should be set up with one or more devices and assets. These
can be added from the main administration page after logging in to the appropriate
server.

Accessing the VisTracks REST APIs
VisTracks provides a uniform method for manipulating the key objects that make up
the back-end platform. As with many REST models, objects, identified by a
particular URL, can be created, read, updated, or deleted through the standard HTTP
operations of POST, GET, PUT, and DELETE respectively. The underlying state of
an object is encoded as an XML or JSON structure2. Parameters that may influence
the request (for example, specifying a time range of interest in retrieving a set of
records) are encoded as part of the query string associated with the URL. Finally, to
access individual objects (rather than a full collection), it is generally possible to
augment the base URL with the unique “id” of the object in question. For example,

http://live.vistracks.com/api/v1/assets

would return all assets in the account, while

http://live.vistracks.com/api/v1/assets/143525

would return a single element from the collection.

Because VisTracks provides a “multi-tenant” architecture (meaning a number of
distinct accounts are managed by a single server instance,) every API request must
include some form of account authentication. The authentication consists of a
username, password pair that is encoded using a mechanism known as “basic
authentication”. Details are described in the inset below.

2 At present, almost all the APIs discussed in this document manipulate data in an XML format.
However, plans going forward include a transition to a JSON format instead. There is currently
one such example -- the “DriverStatus” API discussed later in this document will return information
in JSON format.

Authenticating
REST requests

Before Starting

http://live.vistracks.com/
http://demo.vistracks.com/
http://live.vistracks.com/api/v1/assets
http://live.vistracks.com/api/v1/assets

4

1. Obtain a valid username and password for your account

2. Encode the username and password:
Using Base64 Encoding, encode the username and password with a colon
separating them to obtain the encoded credentials
e.g. johnsmith@mail.com:mysecurepassword
-> am9obnNtaXRoQG1haWwuY29tOm15c2VjdXJlcGFzc3dvcmQ=

3. Put an HTTP request header called "Authorization" on any API request with
the value of "Basic <encoded credentials>"
e.g. Authorization:
Basic am9obnNtaXRoQG1haWwuY29tOm15c2VjdXJlcGFzc3dvcmQ=

4. The HTTP response will include a "Set-Cookie" header that contains a short
lived session id that can be used for additional authorization requests
e.g. Set-Cookie:
JSESSIONID=4664C731A74FA93252FE9896FF389E2D; Path=/

5. Use the JSESSIONID cookie on all subsequent API requests
e.g. Cookie: JSESSIONID=4664C731A74FA93252FE9896FF389E2D

Authenticating an API request

There are some subtleties associated with this authentication scheme. If you’re
creating a browser-based application in Javascript that will communicate with the
VisTracks server using these REST apis, it may not be possible to retrieve the
JSESSIONID cookie as described in step 5. This is due to a security limitation
imposed on applications in the browser environment. In this case, it’s possible to
simply include the encoded username/password pair with every API request.

As explained below, it is also possible to log in to the “vistracks.com” site in a
separate browser tab and issue any API calls from another tab in the same browser.
In this arrangement, the authenticated “sessionid” is automatically sent to the
VisTracks server with each API request without needing to explicitly add any
headers.

Example API Request
Note: in many instances it is possible to explore the available API set without writing
any code. This facility relies on the ability present in most browsers to work in
multiple tabs. Logging into the VisTracks portal (e.g., live.vistracks.com) with
valid credentials establishes a persistent session identifier within the browser that will
be used by API references from other tabs. Following the steps below should
display the result of a simple API call to return information about all the users in an
account.

1. Enter your username and password to log in. (You should see the main landing
page)

2. Open a new tab in the same browser

3. From this new tab, enter the URL for an API, e.g.,

http://live.vistracks.com/api/v1/user

This should display an XML structure similar to the following that enumerates the

Using a browser to
explore an API

http://live.vistracks.com/api/v1/user

5

users associated with the account.

You can try accessing other objects, e.g., assets, in a similar fashion.
(http://live.vistracks.com/api/v1/assets)

This simple technique works because the browser issues an HTTP “GET” request to
the supplied URL. The VisTracks system receives this request and, based on the
associated authentication information, returns the corresponding data encoded as
XML. Normally, it would be the responsibility of the external programming
making the API requests to format and issue this GET request.

To perform actions other than “GET”, (e.g., creating or modifying an instance of an
object,) it would be necessary to write a program to properly format the request, or to
use a debugging proxy tool like “Fiddler”.3

When accessing a REST endpoint (e.g., the “user” object in the example above,) the
information returned often represents an unqualified collection of the objects.
Individual objects, or subsets, can be specified either by appending a list of
object-identifiers (separated by a ‘+’ symbol) as part of the main URL, or by adding
specific query parameters.

3 See, for example, http://www.telerik.com/fiddler

XML returned by a
“GET” request

Use Query
Parameters to

access individual
objects or objects

matching a
pattern.

6

Example:

http://live.vistracks.com/api/v1/user returns information about all users

http://live.vistracks.com/api/v1/user/
1246844

returns information about a single user
with the supplied id.

http://live.vistracks.com/api/v1/user/
1246844+1246849

returns information about two users

http://live.vistracks.com/api/v1/user?
role=ROLE_USER

returns information about all users with
the given “role”.

Fundamental Objects
In order to effectively use and manipulate the objects exposed by the VisTracks
RESTAPI, it is important to have some familiarity with the system’s underlying data
model.

This section will focus on the interrelationships among four key structures,

 Accounts
 Users
 Assets
 Devices

All major data objects accessible to applications are contained under the umbrella of
a particular account. In this section, we’ll look at each of the three objects shown in
the diagram above and discuss the ways in which they’re inter-related.

Users
One or more users can be associated with a given account, each of whom is uniquely
the example API request, each user is also given a unique numeric identifier
generated by the system. (In the illustration above, this identifier is marked by the
“<id>” tag and has the value 1247288.) This numeric identifier will be important in
several cases as it provides a means of linking related records. For example, in Hours
of Service (HOS) applications, one record type returns information about a driver’s

All data objects
accessible through

the API are
contained by a

particular account.

Each user is
associated with a
particular account
and is identified by
a globally unique
email address.

http://live.vistracks.com/api/v1/user/1246844
http://live.vistracks.com/api/v1/user
http://live.vistracks.com/api/v1/user/1246844+1246849
http://live.vistracks.com/api/v1/user?role=ROLE_USER

7

daily activity. The driver in question is represented within that record by an element
such as

<userId>1248584</userId>

where the value of the userId element is the unique numeric id of a particular user.

Each user can also be assigned a set of roles. A user’s roles determine what
capabilities they have within the system as summarized in the table below. In the
above XML example, the user was designated as having ROLE_ACCOUNTADMIN,
and ROLE_USER.

8

C
re
at
e
an

d
m
an

ag
e
to
p-
le
ve

la
cc
ou

nt
s

C
re
at
e
an

d
m
an

ag
e
su

b-
ac

co
un

ts

C
re
at
e
an

d
m
an

ag
e
as

se
ts

an
d

de
vi
ce

s

C
re
at
e
an

d
m
an

ag
e
us

er
s

M
an

ag
e
si
te

br
an

di
ng

an
d
ac

co
un

t
pr
op

er
tie

s

R
un

av
ai
la
bl
e
ap

pl
ic
at
io
ns

M
od

ify
th
e
la
yo

ut
of

"S
ilv
er
lig
ht
"

ap
pl
ic
at
io
ns

S
ch

ed
ul
e
"o
ffl
in
e"

re
po

rts

A
bl
e
to

be
sc
he

du
le
d
fo
rw

or
k
or
de

rs

ROLE_ACCOUNTADMIN

ROLE_ACCOUNTCREATOR

ROLE_ASSETADMIN

ROLE_USERADMIN

ROLE_DASHBOARDAUTHOR

ROLE_ELEVATEDUSER

ROLE_USER

ROLE_WORKORDERASSIGNEE

An "Account Admin" for a top-level account can create, modify, and delete sub-accounts. An "Account Admin" for a sub-account
has full administrative access for that sub-account, but no ability to create any additional sub-accounts.

"User" and "ElevatedUser" are equivalent at present, but reserved for future use by applications.

Devices
Devices represent a physical instrument capable of reporting position and other
information to the VisTracks system. For this discussion, devices can be broadly
divided into two categories: those that correspond to a smartphone or tablet, and
those that are distinct physical telematics devices that may, for example, plug into the
vehicle bus in a car or truck. Any examples that relate to mobile workers or driver
HOS data will be using devices from the former group -- tablets or smartphones.

Information about devices in an account can be retrieved through the

http://live.vistracks.com/api/v1/devices api.

http://live.vistracks.com/api/v1/devices

9

Assets
Assets provide an abstraction to represent the difference between the object being
monitored and the instrument doing the monitoring. For example, an asset might be
a particular car in a fleet and may have attributes like its Vehicle Identification
Number. The vehicle may be equipped with a telematics unit from a given
manufacturer (the device). The collected data, though, is conceptually associated
with the asset and from an API perspective will be retrieved by referencing the asset
object.

In the standard VisTracks clients (SnapTraq web portal or Android/iOS app) the
“Asset Name” is typically used to identify a given piece of equipment. Neither the
name given to the supporting device, nor its unique identifier are usually visible to
the end user.

Provision Records
As noted in the previous couple sections, the VisTracks system distinguishes between
objects being monitored (assets) and the telematics equipment doing the monitoring
(devices.) A third object known as a provision record provides the association
between these two concepts. Provision records offer a time-bound mapping
between device and asset. This allows the system to report a consistent history of a
over a period.

To further illustrate this concept, imagine a situation in which a Vehicle A was
brought on line at the beginning of February using a particular OBD device. A
month later, that OBD device failed and was replaced by a different unit. There
would be two provision records for Vehicle A -- one covering the month of February,
the second covering the time from March forward.

Provision information is available through the “provision” API:

http://live.vistracks.com/api/v1/provision

Configuring Smartphone and Tablet Objects
Devices of type “phone” (which include both smartphone and tablet units) warrant
some additional explanation in that, unlike most telematics devices, they have an
implicit relation to “users” within the VisTracks system. This is because while most
devices use some attribute inherent to the hardware (commonly the IMEI or MEID)
as their unique identifier in the system, the class of “phone” devices rely on the email
address assigned as part of a user’s credentials as that device’s unique identifier. To
facilitate this, the administrative pages that support the creation of a new user include
an option to mark an entry as a “smartphone user”. (See illustration below.)

Provisions provide
the association
between devices
and assets.

10

By checking this option when adding a new user, the system will automatically create
not only the requested user record, but in addition,

a) an Asset record whose “name” is given by the first and last names provided
in the user record,

b) a Device of type “phone” whose unique identifier is the supplied email
address, and

c) a Provision record to associate the Asset to the Device.

Drivers and Hours of Service Objects
The preceding material discussed some of the basic data constructs underlying the
VisTracks system. The concepts of users, devices, and assets pertain to a wide
variety of vertical applications. This section focuses on objects that support a
particular domain, that of mobile workers or professional drivers that will use some
form of tablet or phone device to record their travels and duty status, inform them of
new assignments, and support them in conducting and documenting any required
inspections.

Many professional drivers are subject to a set of regulations defined by the “Federal
Motor Carrier Safety Administration” that define specific guidelines for the amount
of time a driver can operate a vehicle without some form of break. The “SnapTraq”
app offered by VisTracks assists a driver in complying with these regulations by
allowing the driver to note when they transition among defined states (e.g., Driving,
Off Duty, etc.) and presenting the driver with indications that they may be about to
exceed a particular threshold. The accumulating information is also relayed by the
app back to the VisTracks server where it can be accessed through additional API
calls.

Six objects, listed in the following table, provide the bulk of the information relevant
to understanding a particular driver’s activity.

Setting up a new
“smartphone” user
will implicitly
create a
corresponding
device and asset
based on teh
user’s assigned
email address.

11

Object Description

Driver Summary information about a user registered within the system
that will be driving a commerical vehicle subject to the FMSCA
regulations.

Driver Status A read-only structure that aggregates all current information
about a driver such as their current duty status, violations, etc.

Driver Daily Summary information about an individual’s activity on a
particular day

Driver History Records reflecting all status changes for a driver

Driver Violations Information about driving violations

Inspections Details of the items inspected on a particular vehicle

Table 1 - APIs related to Hours of Service application

Pictorially, the relationships among various items is shown below:

Image 1 - Relationships between a Driver object and associated data

In addition, two other objects, workorders and jobsites provide information for the
activities of mobile workers that may or may not be subject to the FMCSA
regulations.

12

DriverDaily
The “Driver Daily” object returns information about a full day’s activity for one or
more drivers over a given time range. An example URL for this API includes a
specific time range and an indication of whether records for all drivers are of interest:

http://live.vistracks.com/api/v1/driverdaily?allUsers=true&fromDate=2015-03-1
0&toDate=2015-03-10&includeLatestStatus=true

In this example, there are several arguments included as part of the query string in the
URL:

-allUsers=true indicated that the request should return information about all drivers in
the account. To select only a specific driver, the userId for the individual in
question can be added to the query string in place of the allUsers:

http://live.vistracks.com/api/v1/driverdaily/?userId=1248594&fromDate=2015-0
3-10&toDate=2015-03-10&includeLatestStatus=true

Alternatively, if the credentials passed with the request are for an individual user
instead of a user with the role “ACCOUNT_ADMIN”, only records pertaining to that
user will be returned.

-fromDate, toDate define the time range of interest.

-includeLatestStatus is a boolean field that, if true, will include information
corresponding to the latest report from the device (driver location and status) that
falls within the specified time range.

As with all the API calls, the information returned from this takes the form of an
XML structure. The (somewhat lengthy) result of the example above appears as
follows:

<driverDailies>
<driverDaily>

<id>745</id>
<userId>1248518</userId>
<carrier>Joes Trucking</carrier>
<certified>false</certified>
<coDriverName>John Doe</coDriverName>
<cycle>US60hr7days</cycle>
<date>2015-01-27</date>
<driverEmail>admin@hcss.com</driverEmail>
<driverName>[Driver Name]</driverName>
<driverPhone/>
<exceptions>None</exceptions>
<timeZone>EST</timeZone>
<homeTerminalAddress>100 Main Street</homeTerminalAddress>
<mainOfficeAddress>801 Warrenville Road, Suite 50, Lisle, IL
60532</mainOfficeAddress>
<beginOdometer>0</beginOdometer>
<endOdometer>0</endOdometer>
<odometerUnits>MILES</odometerUnits>
<shippingDocsManifestNo>Shipping Document
100</shippingDocsManifestNo>
<shippingDocsShipperCommodity>[Shipper or
Commodity]</shippingDocsShipperCommodity>
<trailerId>[Trailer Id]</trailerId>
<truckId>[Truck Id]</truckId>
<fields/>
<lastChangedDate>2015-01-27T18:26:18.615Z</lastChangedDate>

</driverDaily>

http://live.vistracks.com/api/v1/driverdaily?allUsers=true&fromDate=2015-03-10&toDate=2015-03-10&includeLatestStatus=true
http://live.vistracks.com/api/v1/driverdaily/?userId=1248594&fromDate=2015-03-10&toDate=2015-03-10&includeLatestStatus=true

13

</driverDailies>

Principal values in this structure are listed in the following table.

Table 2 – Sample fields returned from DriverDaily Request

DriverHistory
Drivers using the SnapTraq tablet app are able to use the main interface screen to
easily change their driving status. There are five defined states for a driver:

- Driving

- On Duty

- Off Duty

- Sleeper Berth

- Waiting at Site (for Oil Field Service Exception)

When the driver makes an explicit state change, they are prompted to provide an

Object Description

cargo Type of material being shipped as supplied on “Driver Settings”
page of app

carrier Name of Carrier as supplied on “Driver Settings” page of app

certified Boolean indicating whether the day’s log had been certified by
the driver

coDriverName Optional second driver on duty

date Date of Report

driverEmail Based on user object associated with person logged into tablet

beginOdometer Value entered by driver at start of day

endOdometer Value entered by driver at endof day

odometerUnits MILES or KM

truckId Identifier of truck entered in driver settings

trailerId Identifier of trailer entered in driver settings

Filename name of certified log in PDF format

14

optional note documenting the change. In addition, the software will record the
location of the device at the time the change was made.

The “Driver History” object provides access to these changes. Typically, the call to
retrieve Driver History records would provide a date range of interest. The resulting
XML appears as follows:

The key fields for each record are summarized in the table below:

Field Description

userId reference to the relevant driver whose status change is being
reported

location city and state where status change was initiated

driverEdit True if driver edited this status record

duty new driving state – one of OffDuty, OnDuty, SleeperBerth,
Driving

note optional text field containing any notes provided by the driver
relating to the state change. These notes are reflected in the
visual chart in the app and reports.

beginTimestmap date and time stamp recording time when state change was
initiated

breakCompPoint Boolean indicating if the “break” timer was reset to max
value.

shiftCompPoint Boolean indicating if the “shift” timer was reset to max value.

cycleCompPoint Boolean indicating if the “cycle” timer was reset to max
value.

lastChangedDate time at which the most recent state change for the driver was
recorded.

Table 3 - fields returned by the DriverHistory API

15

DriverViolations
The “DriverViolations” API includes a list of any violations incurred over a specified
time range. The returned XML structure takes the form shown in the excerpt below.
Each violation includes a timestamp reflecting the date and time at which the
violation occurred and in indication of the type of violation. Possible violations
include

Violation Type Description

DUTY_HOURS_IN_CYCE Driver exceeded allowed
“on-duty” hours in the current
cycle

DUTY_HOURS_14 Driver exceeded allowed driving
time in a 14 hour period

DRIVE_HOURS_11 Driver exceeded 11 hour limit
without a break

DRIVE_HOURS_BEFORE_30_MIN_BREAK Driver did not take required
break after continuous hours of
driving

DRIVE_HOURS__TO_BREAK Driver did not take required
break after 8 continuous hours of
driving

SHIFT_DUTY_HOURS Driver exceeded maximum duty
hours allowed on shift

SHIFT_DRIVE_HOURS Driver exceeded maximum
driving hours allowed on shift

Table 4 - Possible Values of Driver Violations

Violations are returned in an XML collection as illustrated below. Not that each
violation has its own unique id, but all refers to the userId of the associated driver.

16

Inspections
Drivers subject to HOS regulations are required to perform full vehicle inspections at
various times. In the VisTracks system, the fields relevant to an inspection are
defined by an inspection template. Each asset in an account can be associated with
a particular template.

Inspection templates are structured as hierarchy. Each inspection will be associated
with one category, e.g., “Hauler/Tanker”. A category in turn can have one or more
areas (e.g., Safety Equipment and Vehicle). Finally, each area consists of several
items (e.g., Air Compressor, Hoses, Belts) that constitute the actual parts to be
inspected.

The XML structure returned by the “inspections” API has the following form:

A fleet of ten
trucks may
associate six with
one type of
inspection, and
four with another
based on the type
of truck and
relevant
inspection points.

17

Values in this structure include

Field Description

beginTime/endTime The times at which the inspection was started/completed
respectively.

status Either IN_PROGRESS or CERTIFIED

inspectorTrype Either DRIVER or MECHANIC

tripType Reflects whether this inspection was completed
PRE_TRIP or POST_TRIP

truckId/trailerId Asset names of the truck/trailer combo being inspected

certifyMessage A string presented to the driver to explicitly acknowledge
that they have completed the inspection.

signature An ASCII encoding of the driver’s signature image
captured on the tablet.

userId reference to the individual performing the inspection

items A collection of the individual inspection points examined
as part of the inspection.

Table 5 - Fields returned from inspections API

Workorders
In addition to monitoring Driver Hours of Service for compliance with the FMCSA
regulations, SnapTraq provides a powerful facility for assigning particular jobs

18

(workorders) to individual drivers. Drivers receive notification of their assignments
on their mobile device and can register the time of completion of the workorder.

Each workorder is associated with a particular jobsite record as shown in the
illustration below.

Programmatically, the jobSiteId field of the structure returned from the “workorders”
API request can be used to retrieve information about the corresponding job site.

Jobsites
As noted above, jobsites are used in conjunction with workorders and provide simple
location information about a particular business or residence.

For example, to retrieve information about a specific job site (in this case the site
with the id 13597) you can issue this API request:

http://live.vistracks.com/api/v1/jobsites/13597

Each workorder is
associated with a
user (referenced by
userId) and a jobsite
(referenced by
jobSiteId)

A given user may be
assigned several
workorders

19

The field names should be largely self-explanatory with the possible exception of the
“note” field which presents the free form text entered by the user when the job site
was defined.

Getting Started with Sample Applications
VisTracks provides sample code to illustrate how the RESTful calls can be used to
retrieve data from and send data to the backend system. Almost all samples are
written in Javascript and can be downloaded from the “developer.vistracks.com”
website. They can be launched either from a web server environment or directly
from a file system.

Basic “read” Access to Objects
Probably the simplest way to begin working with the API set is to explore the various
endpoints using the http “GET” operator. The file “vt_api_testbed.html” is a small
Javascript application that, when launched, provides an interface to retrieve all
records of a certain type within an account. The application, shown in the
screenshot below, provides buttons that correspond to several of the objects exposed
in the API.

Image 2 - interface from vt_api_testbed sample

Note that the actual URL used to retrieve the information is presented so it can be
easily copied and used in any additional experimentation.

Creating Objects
The next set of samples illustrates how to create new instances of various objects.
These samples, along with an explanatory “ReadMe”, are included in the
“createSamples.zip” archive on the developer.vistracks.com site.

This zipfile expands into a directory containing several HTML pages with names of
the form “createType.html. Corresponding to each of these pages is a small
Javascript file with the same basename, but with a “.js” suffix. The real logic that is

20

common to all the pages resides in the createxxx-jscore.js file. As long as these files
reside in the same directory you should be able to launch any sample application by
clicking on the “.html” file to open it in a browser. For example, the illustrations
below shows the “createAsset” application both before and after issuing the “POST”
to create the object. The body of the POST sent to the server, as well as that of the
reply from the server are displayed after the “create” operation.

Updating, Deleting and Combining Objects
The final set of sample applications provide a somewhat more complete “reference”
framework for working with the driver-related objects in particular. As shown in
the capture below, for example, the application will provide a means to create and
manipulate drivers and their associated records such as Violations, Status, History,
etc. These samples are located in the “sampleDevSite” folder.

21

Summary
This document discussed several of the key objects that form the basis of the
VisTracks platform. More detailed information about the individual APIs is presented
on the “developer.vistracks.com” website. The table below provides a quick review
of the objects covered in this present discussion. Depending on the particular
account, <baseURL> will be one of

http://live.vistracks.com, or

http://demo.vistracks.com

Object Description and REST access point

User Provides access to one or more users associated with the target
account.

<baseURL>/user

Asset End-user facing abstraction for all data collected about a
particular vehicle

<baseURL>/asset

Device Tablet, Smartphone, or telematics device that captures realtime
information about an asset and transmits it to the VisTracks
backend

<baseURL>/device

Provision Records that define an association between Asset and Device

<baseURL>/provision

http://live.vistracks.com,/
http://demo.vistracks.com/

22

DriverDaily Record that summarizes the activities of a driver using the HOS
application.

<baseURL>/driverdaily

DriverHistory Record that indicates time and place of explicit driving status

changes

<baseURL>/driverhistory

DriverViolations Records that reflect any driving thresholds that were exceeded

<baseURL>/driverviolation

DriverStatus Records summarizing current driving state for each driver.

<baseURL>/driverstatus

Inspections Records that capture the state of all vehicle inspection points.

<baseURL>/inspections

Jobsite Address information for locations where particular activities are
to be performed by a mobile worker

<baseURL>/jobsites

Workorder Record that defines a particular assigment for a user within the
system

<baseURL>/workorders

Table 6 - Summary of available APIs

	Introduction
	Prerequisites
	Accessing the VisTracks REST APIs
	Example API Request

	Fundamental Objects
	Devices
	Assets
	Provision Records
	Configuring Smartphone and Tablet Objects

	Drivers and Hours of Service Objects
	DriverDaily
	DriverHistory
	DriverViolations
	Inspections
	Workorders
	Jobsites

	Getting Started with Sample Applications
	Basic “read” Access to Objects
	Creating Objects
	Updating, Deleting and Combining Objects

	Summary

